Using analogy to acquire commonsense knowledge from human Contributors

نویسنده

  • Timothy Chklovski
چکیده

The goal of the work reported here is to capture the commonsense knowledge of non-expert human contributors. Achieving this goal will enable more intelligent human-computer interfaces and pave the way for computers to reason about our world. In the domain of natural language processing, it will provide the world knowledge much needed for semantic processing of natural language. To acquire knowledge from contributors not trained in knowledge engineering, I take the following four steps: (i) develop a knowledge representation (KR) model for simple assertions in natural language, (ii) introduce cumulative analogy, a class of nearest-neighbor based analogical reasoning algorithms over this representation, (iii) argue that cumulative analogy is well suited for knowledge acquisition (KA) based on a theoretical analysis of effectiveness of KA with this approach, and (iv) test the KR model and the effectiveness of the cumulative analogy algorithms empirically. To investigate effectiveness of cumulative analogy for KA empirically, Learner, an open source system for KA by cumulative analogy has been implemented, deployed, and evaluated. Learner acquires assertion-level knowledge by constructing shallow semantic analogies between a KA topic and its nearest neighbors and posing these analogies as natural language questions to human contributors. Suppose, for example, that based on the knowledge about “newspapers” already present in the knowledge base, Learner judges “newspaper” to be similar to “book” and “magazine.” Further suppose that assertions “books contain information” and “magazines contain information” are also already in the knowledge base. Then Learner will use cumulative analogy from the similar topics to ask humans whether “newspapers contain information.” 1The site, “1001 Questions,” is publicly available at http://teachcomputers.org/learner.html at the time of writing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Four Problems with Extracting Human Semantics from Large Text Corpora

We present four problems that will have to be overcome by text co-occurrence programs in order for them to be able to capture human-like semantics. These problems are: the intrinsic deformability of semantic space, the inability to detect co-occurrences of (esp. distal) abstract structures, their lack of essential world knowledge, which humans acquire through learning or direct experience with ...

متن کامل

Acquiring Commonsense Knowledge for Sentiment Analysis through Human Computation

Many Artificial Intelligence tasks need large amounts of commonsense knowledge. Because obtaining this knowledge through machine learning would require a huge amount of data, a better alternative is to elicit it from people through human computation. We consider the sentiment classification task, where knowledge about the contexts that impact word polarities is crucial, but hard to acquire from...

متن کامل

ConceptNet — a practical commonsense reasoning tool - kit

ConceptNet is a freely available commonsense knowledge base and natural-language-processing tool-kit which supports many practical textual-reasoning tasks over real-world documents including topic-gisting, analogy-making, and other context oriented inferences. The knowledge base is a semantic network presently consisting of over 1.6 million assertions of commonsense knowledge encompassing the s...

متن کامل

Ethnomethodology and Conversational Analysis

In a speech community, people utilize their communicative competence which they have acquired from their society as part of their distinctive sociolinguistic identity. They negotiate and share meanings, because they have commonsense knowledge about the world, and have universal practical reasoning. Their commonsense knowledge is embodied in their language. Thus, not only does social life depend...

متن کامل

Large-Scale Acquisition of Commonsense Knowledge via a Quiz Game on a Dialogue System

Commonsense knowledge is essential for fully understanding language in many situations. We acquire large-scale commonsense knowledge from humans using a game with a purpose (GWAP) developed on a smartphone spoken dialogue system. We transform the manual knowledge acquisition process into an enjoyable quiz game and have collected over 150,000 unique commonsense facts by gathering the data of mor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003